The Power of Fields and Attributes in AutoCAD

Dhanjeet Sah
PTW Architects – Sydney, Australia

Learning Objectives

1. Learn how to create attributes and redefine existing attributes
2. Learn to insert fields, insert field with text/mtext, or use with attributes
3. Learn to use fields for complex calculation using elements property combining with formulas
4. Learn how to extract attribute/fields from the design data and output as AutoCAD Table or export as Excel or database file

Description

Have you imagined how powerful attributes and fields can be in your design process? Learn how to add intelligence to your design data using fields and attributes. You will learn how to define and redefine attributes, using fields with text/Mtext and attributes. See how quickly you can use fields to extract properties of elements and combine them with formulas for complex calculations. You will also learn how to extract attribute/fields from the design data and output as AutoCAD software Table or export as a Microsoft Excel or database file.

About the speaker

Dhanjeet Sah has background with 17 years of industry experience, mentoring industry professionals in adopting BIM/CAD/CG techniques to set up real-world production pipelines and workflows while integrating multiple applications for a specific task. He has also worked for numerous projects from Design, Visualization, 3D Animation/Compositing to CAD/BIM Consulting for various multinationals and government organizations. He is working as a BIM Manager at PTW Architects and his main role is provide consulting, support and training services to develop workflows to achieve higher levels of collaboration and efficient design through the use of AutoCAD, Revit, Navisworks, 3ds max, other applications/technologies to their staffs. He is also an AutoCAD, Autodesk Revit Architecture & 3ds max (since 3ds max 4) certified professional/Instructor from Autodesk Inc. He has instructed as Autodesk Certified Trainer for AutoCAD, 3ds max and Revit in Autodesk Training Centre in different countries; this includes Singapore, UAE, Nepal and Australia.

Email: dhanjeetsyd@gmail.com
About Attributes

In AutoCAD you can create geometry such as lines, circles, arc etc. You can also add things such as text, hatch and dimensions to annotate the drawings. AutoCAD is also a database of information. Most of that database contains the information for reproducing what you have drawn, but you can also add information that is non-graphical. One of the easiest ways of adding non-graphical information is to use attributes. An attribute is text that can be attached to a block to convey more information than just the geometry on its own could convey.

Attribute data can also be easily extracted to an external file such as an Excel spreadsheet or database or placed as a table within the drawing. This makes it easy to gather information for a Bill of Material or Parts List.

Note: It is important to make sure that attribute tags have unique names. The Enhanced Attribute Editor will display any duplicate tags in red. Duplicate tags will cause problems when extracting data or if you use them in dynamic blocks.

About Defining Attributes

Attributes are defined using the Attribute Definition dialog, ATTDEF or AT command at the command prompt. One can also find commands to Define, Edit and Manage attributes on the Insert tab of the Ribbon.
There are three components to an attribute definition:
- A unique tag that identifies the attribute by name
- A prompt that can be displayed as the block is inserted
- A default value that is used if a variable value is not entered at the prompt

When one defines an attribute one specifies its features, such as an identifier, an initial value, its appearance, its location relative to the associated block, as well as other properties. The attribute becomes part of a block definition, and when one inserts an attributed block into a drawing, the attributes are also inserted.

An attribute’s value can be the same or different for each insertion of the block depending on how the attribute was defined. Additionally, a block can have multiple attributes.

Attribute Definition Dialog Box

![Attribute Definition Dialog Box](image)

FIGURE 2: ATTRIBUTE DEFINITION DIALOG BOX

Defining the Attribute

1. Open the drawing “AU_2015_GEN11005-L_Start.dwg”
2. Type `ATTDEF` at the Command prompt or from the Ribbon -> Insert tab -> Block Definition panel, select Define Attributes and enter the attributes as shown below.
The Power of Fields and Attributes in AutoCAD

Figure 3: Define Attribute Option

Tag: ITEM
Prompt: Enter Item Number
Value: BS001
Text Height: 70

3. Click ok and place as shown in Fig 4.

Figure 4: Basin Attribute

4. Repeat for COST & MAKER ATTRIBUTE
5. Once Attributes are defined, let’s make BLOCK
 - Enter B or BLOCK on command prompt and press enter
 - Enter details as shown in the dialog box;
 - ENTER BLOCK NAME = BASIN
 - Click on “Pick Point” and then select Mid of Basin as shown in Fig 5.
 - Click on “Select Object: and select all objects that forms basin including Attributes
The Power of Fields and Attributes in AutoCAD

Figure 5: Block Definition

a. Click on “OK”.

b. Enter ITEM = “BS001”, COST=120 & MAKER= AU 2015 and click “OK”.

Insert Block and define values

1. Enter Insert command or go to INSERT Tab then click on “Create Block”.
2. Select “Basin” from list and then Place in the Kitchen Top as shown in fig 6. with the values required.

3. Repeat the INSERT to place if you want to continue placing same block elsewhere with different values as required.

Note: **ATTDIA** (System Variable) - Controls whether the INSERT command uses a dialog box for attribute value entry or whether one is prompted for the values at the Command prompt. This variable is saved in the Windows Registry and once set remains that way for all drawings until changed.

Default value = 1 (uses a dialog), setting this value to 0 (zero) issues a Command prompt.
Modifying Attributes Value

There are few ways to change value of Attributes:

1. Using **PROPERTIES PALATTE**
 - Select Basin and then change the Value from Properties Palette as shown in Fig 7

2. D-click on block or enter “**EATTEDIT**” on command prompt and then change value as shown in fig 8.
3. **BATTMAN** – this command edits attributes and properties in the block, similar to the **EATTEDIT** command, but in all block definitions. In other words, it makes global changes to all insertions of a single block. Additionally, it allows one to add or remove attributes, as well as reorder them.

Redefine Blocks with Attribute

Use one of the methods.

1. Explode block, Add new attribute and then convert the block with same name. You will be then prompted to Redefine Block.

2. Select Basin and then R-click and click “Block Editor”. In this block editor, you can add/remove attribute and then click on **CLOSE** button.
You will be prompted with “Block- Changes Not Saved” dialog box. Click on “Save the changes to Basin.”

You may not see the changes immediately and hence we have to Synchronize the block using command `ATTSYNC` or `Insert > Synchronize` as shown in Fig 9.

Figure 9: Synchronize
Fields:
A field in text contains instructions to display data that you expect to change during the life cycle of a drawing.

When a field is updated, the latest data is displayed. For example, the value of the FileName field is the name of the file. If the file name changes, the new file name is displayed when the field is updated.

Fields can be inserted in any kind of text (except tolerances), including text in table cells, attributes, and attribute definitions. When any text command is active, Insert Field is available on the shortcut menu. Examples are the current date, the drafter’s initials, the company name and address, and so on.

Change the Appearance of a Field
The field text uses the same text style as the text object in which it is inserted. By default, fields are displayed with a light gray background that is not plotted FIELDDISPLAY.

Let’s create CUSTOM FIELDS:

1. You use the Drawing Properties feature to create custom properties. Choose the Application button> Drawing Utilities> Drawing Properties or choose File>Drawing Properties to open the Drawing Properties dialog box.
2. Click the Summary tab. If you can use any of these properties, start here. For example, you can use the Title field for the drawing name.
3. To add a custom field, click the Custom tab. Use a custom field for content that cannot use one of the fields that come with AutoCAD.
4. Click the Add button. In the Add Custom Property dialog box, enter a field name and Value and click OK.
Enter: Project Name = AU2015 Home

Client Name: AU 2015

Insert fields

5. Open the drawing “AU_2015_GEN11005-L_Fields.dwg”
6. Activate Layout “A101”.
7. Make Text Style = ST2mm as shown in Fig 10

8. Go to INSERT tab and then click on Field

9. Select “Project Name” from the field list and place as shown in Fig 11.
10. Repeat same step as 5 to insert CLIENT NAME.

11. You could also exercise to insert fields to insert as many you could to annotate the drawings.
Insert Fields using Single Line Text or MText

1. Make Text Style = ST6mm as current
2. Create a Single Line Text or MText
3. R-click in the editor then click on Insert Field.

4. Select “SystemVariable” in the left pane, select CTAB and click OK to insert Sheet number that corresponds to Layout name.
5. This process can be repeated for all other Layouts.
7. Enter RE or REGEN on command prompt to regenerate drawing that updates the fields.
Area Calculation using Fields

1. Open the drawing “AU_2015_GEN11005-L_Area.dwg”
2. Click on Isolate Layer and then click on Pline as shown in Fig 12.
4. R-click in text editor, R-click and then click Insert Filed.
5. Select Object from left panel, click on and select PLINE as shown in Fig 13.

6. Change the Precision = 0.00
7. Click on Additional Format and then enter 0.000001 in Conversion Factor and SQ M in Suffix. Use backspace if you want to leave space after the value is appeared.
8. Click OK and then OK again. This step will insert Area values from the select enclosed polyline.
9. Repeat the steps to create area for other rooms.

Area Calculation using Fields and formulas

1. Go to ANNOTATE > Tables > Table
2. Click on From Object data in the drawing and then OK
3. Select “Create a new data extraction”. And then click on NEXT.
4. Type AREA in name and click SAVE.

5. Click on “Select objects in current Drawing” and then click on to select all polylines. After selecting all polylines, click NEXT.
6. Click NEXT
7. In the dialog box, in right pane- Uncheck all except Geometry and then in left pane uncheck Global width.
8. Un-check Show Count & Name as shown in fig 13 (1 & 2)
9. R-click on AREA column and then click on Set Column Data format.
10. Select **Data Type** = Decimal Number, **Format** = Decimal and Precision 0.00

11. Click on **Additional Format** and then Type 0.000001 in conversion factor.
12. Click **NEXT** and then check Insert data extraction table and output data to external file if you want to save this output as excel table.
13. Select **ROOMModel** in Table style if there is different name and click NEXT
14. Click **FINISH** and then insert table in model space near to drawing.

![Excel table](image1.png)

15. Select end of the Row no 12 and then R-click **ROWS> Insert Below** to insert a new row as shown in Fig 15.

![Insert Below option](image2.png)

FIGURE 15: DEFINE ATTRIBUTE OPTION

16. Select cell A13, R-click and then **Locking > Unlocked**.
17. D-click on A13 and then R-click and select **Insert Field**.
18. In field dialog box, select **Formula** in field Name pane, click on **SUM** and select cells A3 to A12 as shown in fig 16.

![Figure 16: Cell Selection](image)

19. Select **0.00** in Precision and then click OK.
20. These steps calculates sum of areas from cell A3-A12.

Modify design and update Table.

21. Stretch one of the Top-right Polyline as shown in Fig 16.
22. The data extraction table has to be updated to reflect with values in new area and formulas.
23. Select Table, R-click and then click **Update Table data Link**.
24. You will see the new values reflected in the table.

Conclusion:

Attributes can be very simple to very powerful feature of AutoCAD. Combining fields with attributes, allowing formulas with in field also can enhance your design & documentation. Further information can always found on pressing F1 or typing command Help.