Mesh Modeling in AutoCAD®

Speaker: Dave Young – Repro Products

AC5089

Although AutoCAD has very powerful 3D modeling capabilities, most people use it for modeling geometric shapes or extruding a closed figure, which results in angular-looking models. The recent introduction of mesh modeling now allows for more free-form organic shapes. Traditionally, Autodesk products have been separated into distinct categories: AutoCAD for lines and arcs, Autodesk® Inventor® for parts and machines. Neither of these methods handles non-prismatic shapes very well. This class will explore the use of mesh modeling tools and techniques for creating organic shapes in AutoCAD for manufacture.

Learning Objectives
At the end of this class, you will be able to:

- Create 3D mesh objects
- Modify 3D mesh objects
- Convert from mesh to solid objects
- Use solid object modeling tools for creating molds, then export for use in other programs or computer numerical control (CNC) machines

About the Speaker
Dave began his search for CAD enlightenment in the civil engineering world, drawing up mortgage surveys about 20 years ago. From there, he switched over to a CAD manager position and then to IT manager, then started working with an Autodesk reseller about five years ago. His computer science degree and IT background have helped him along the way with customizing and implementing unique solutions for over a dozen years.

Although his family still doesn’t know how to explain what he does, Dave has been working at Repro Products (an Autodesk reseller) to help companies with their Autodesk training and implementation needs.
Types of Modeling in AutoCAD (The Autodesk Definition)

Solid Model
A solid model is an enclosed 3D body that has properties such as mass, volume, center of gravity, and moments of inertia.

Surface Model
A surface model is a thin shell that does not have mass or volume. AutoCAD offers two types of surfaces: procedural and NURBS. Use procedural surfaces to take advantage of associative modeling, and use NURBS surfaces to take advantage of sculpting with control vertices.

Mesh Model
A mesh model consists of vertices, edges, and faces that use polygonal representation (including triangles and quads) to define a 3D shape.

Unlike solid models, a mesh has no mass properties. However, as with 3D solids, you can create primitive mesh forms such as boxes, cones, and pyramids. You can then modify mesh models in ways that are not supported for 3D solids or surfaces. For example you can apply creases, splits, and increasing levels of smoothness. You can drag mesh subobjects (faces, edges, and vertices) to deform the object. To achieve more granular results, you can refine the mesh in specific areas before modifying it.

Use mesh models to provide the hiding, shading, and rendering capabilities of a solid model without the physical properties such as mass, moments of inertia, and so on.

Mesh Model – In English
A simple way to think of a Mesh Model is to imagine a balloon surrounded by chicken wire. You can push and pull on the chicken wire, the balloon conforms to the new shape, but its mass does not change.

Mesh Models for the purpose of this session
In this session, we will be focusing on creating mesh models for the production of molds to create physical objects.

Imagine that you want to create thousands of realistic potatoes (correct size and mass). Since machining each one is out of the question because of the quantity, you turn to molds. We’ll use AutoCAD mesh models to create the “work body”, and then in turn convert it into a solid, and finally subtract it from a solid block to create the mold cavity.
Mesh Modeling in AutoCAD® (AC5089)

Prerequisites (can my setup handle Mesh Modeling)

- Software: AutoCAD 2010 or later.
- Hardware: It depends on how fast you want to go.

Mesh modeling was introduced in AutoCAD 2010, so you must have an AutoCAD based product, release 2010 or newer. No more hanging on to r14 just because you like the way it looks.

When it comes to hardware, any computer capable of running your AutoCAD will work with mesh modeling. Unless you are working with very large, complex models, RAM is not that important. Anything over 2 gigabytes should be sufficient. The same goes for the processor. Generally, most mesh models are relatively small in nature, and do not require the latest Xeon processors to manipulate.

Where you will see the most performance difference is with your graphics card. You could use a $24.99 GeForce 210 while working with mesh models. You could also use Dixie Cups to fill a swimming pool. Your best bet is to use a workstation class graphics card, either a nVidia Quadro or ATI FirePro, selecting something from the upper end of the pack. This will allow the smooth use of more display modes within AutoCAD, such as Realistic and Shaded With Edges.

Getting Started

Template Files
Out of the box, AutoCAD comes with two basic templates, acad.dwt and acad3D.dwt. Both are very similar, in that they have the minimum set of parameters necessary to start a drawing. However, you should choose the acad3d.dwt template as your starting point for modeling, as the system settings are optimized for 3D work. These settings facilitate the use of the Gizmo’s and the background display optimized for 3D. You can always start with the default acad3D.dwt and add your own layers and linetypes. Just remember to do a “saveas” so you fall back to the acad3d.dwt if necessary.

Workspaces
Unless you really enjoy typing all AutoCAD commands, you will need to access the 3D modeling workspace. This will give you access to all the really cool 3D features of AutoCAD, including the Mesh ribbon panel.
Display Options
By default, the acad3d.dwt template will start with a Perspective projection. This is useful if you are laying out a scene, but can be quite distracting or even misleading when spinning the model around during the editing process.

Beyond the obvious geometric differences between Perspective and Parallel, you will find that the Parallel projection comes with a “horizon” of sorts. You may want to turn the horizon off, as it can be a drain on the graphics system as well as being a distraction.

To turn off the horizon, you will need to change the colors of a few display elements, which can be accessed through Options → Display → Colors button.

Once in the “Drawing Window Colors”, change the Context to 3D Perspective Projection, and then change the color of the top six items to black, white, or your favorite color somewhere in between.

You may also want to turn off the Grid <F7>, although it does provide a good reference to the XY plane (Z=0).
The Mesh Ribbon Tab

The Mesh Ribbon tab consists of six panels, five of which we’ll cover briefly in this session.

1. Primitives – Used for creating Meshes
2. Mesh (Refinement) – Used to refine the entire Mesh
3. Mesh Edit – Used to modify parts/faces of a Mesh
4. Convert Mesh – Many CAD and CAM systems only understand a solid object
5. Selection – Useful for selecting only what you want

Mesh model creation
The best way to start a mesh model for an organic, non-prismatic shape is to, believe it or not, start with a geometric primitive such as a mesh Box, Cone, or Sphere. Before creating your first mesh primitive, the number of vertexes per side (tessellation divisions) must be set.

Setting the tessellation divisions
On the Mesh Tab, Primitives Panel, click on

Click here to set the Tessellation Divisions
Considerations for mold design
When setting the tessellation divisions, you should consider how the final model will be used. For example, how much detail you need and the type of molding process to be used. Most molding processes require a parting plane where two parts of the mold meet. We will need to consider where this parting plane will be both when setting the tessellation divisions and placing the mesh in the drawing.

Tessellation divisions
These are the number of mesh segments per face of the primitive object we choose to create. The more divisions you have, the finer the level of detail you can sculpt on your model. Initially, you may think that it would be a good idea to just bump this up to the maximum to start with. Not necessarily a good thing. The more divisions you have, the more computing power required to work with the model. More importantly, it also means that there are just that many more points you need to manipulate to get the shape you are looking for. The mesh model shown on the right was created from an 8 X 10 X 3 mesh box primitive, and you can see that it has plenty of surface bumps, ridges and depressions on it. Fewer tessellation divisions allow for a smoother, flowing surface.

Mesh placement in the drawing
After determining the size of your mesh, you need to think about where it goes in the model. When creating a mesh primitive in AutoCAD, the initial shape will be drawn on the current UCS at the current elevation. In a new drawing, this will be on the XY plane at a Z=0 elevation.

If we are creating a baked potato that is roughly 3" high, 3" wide and 6" long, we would probably want to put the middle of the potato at 0,0,0. This means that we could use the origin XY plane as a parting plane for our two mold halves, with one above and one below this plane. In order to get the center of our potato at a zero elevation, we could either create the mesh primitive first and then move it down 1.5", or set the elevation to -1.5" before creating the mesh primitive.

Command: Elevation
Enter a new value for ELEVATION <0.0>: -1.5

Now that we know that the zero elevation will be our parting plane, we can manipulate any mesh vertices in any direction that are either above or below the XY plane, but for those that are on the XY plane (Z=0) modify only in the X and Y directions, leaving them at Z=0.
Modeling Assistance
There is still one more thing to do before creating a mesh primitive that will make the modeling process a little easier: a sketch. Let’s say that you want to model an amoeba, and that it must be 3” X 2” X 1.5” for some reason. Rather than just creating a mesh box and then morphing into a shape, why not create a sketch (using Sketchbook Designer or even just a spline), then make sure that sketch is the size you need in AutoCAD (3” x 2” for the amoeba). This way, when you create the mesh primitive box you can place it mostly inside the amoeba sketch and pull vertexes out to the sketch line (this will make more sense in a little bit).

Creating a Mesh Primitive
Now that everything is in place, it’s time to create a Mesh Primitive. AutoCAD provides seven primitives, and the finished shape of your model will determine which primitive you start with.

Only experimentation and experience will tell you which is the best starting shape for your model, but think back to the earlier analogy of the chicken wire. You want to be able to push and pull the model vertexes into the correct shape, but you also don’t want to spend three days doing it. Generally speaking, a mesh box is often the best choice.

Creating a mesh primitive is very similar to creating a solid primitive. For most objects, you create the base shape (rectangle or circle) and then select a height.

The only exception to that method is the mesh sphere and mesh torus.
Revolved Mesh Surface

Sometimes it’s just not practical to create a finished mesh model by starting with a mesh primitive, especially if the overall shape is round or cylindrical (think UFO or an ear of corn). The official term is “Rotational Symmetry” or “Axial Symmetry”. For these cases, we can use the Revolved Mesh Surface.

As with a revolved solid, we start with the shape to revolve and a line to revolve it about.

Unlike a revolved solid, we need to set the number of tessellation divisions to use. These are set using SURFTAB# system variables, which can be thought of as latitude and longitude line along the revolved mesh. Each line/arc segment of the revolved shape will be divided into the number of tessellation specified by the SURFTAB2 system variable

SURFTAB1: Longitude - the long lines parallel to the axis of rotation
SURFTAB2: Latitude - the lines horizontal on surface, perpendicular to the axis

Consider the two views of the same revolved surface below. It is a sphere created by revolving a semicircular arc around its center point. You can see the 24 divisions around the “equator”, and the 4 divisions along the axis.

<table>
<thead>
<tr>
<th>SURFTAB1:</th>
<th>SURFTAB2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>4</td>
</tr>
</tbody>
</table>
Displaying a Mesh Model
AutoCAD, at least in the past few releases, comes with an impressive array of visual display styles and materials already configured. While working with a mesh model, it may be beneficial to switch between some of these display modes.

<table>
<thead>
<tr>
<th>Display Style</th>
<th>Description</th>
<th>Graphics Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shades of Gray</td>
<td>Simplest non-wireframe display</td>
<td>Low</td>
</tr>
<tr>
<td>Conceptual</td>
<td>Provides different level of detail than shades of gray</td>
<td>Medium</td>
</tr>
<tr>
<td>Shaded</td>
<td>Very high level of surface detail</td>
<td>High</td>
</tr>
<tr>
<td>Shaded With Edges</td>
<td>Same detail level as shaded</td>
<td>Very High</td>
</tr>
<tr>
<td>Realistic</td>
<td>Displays materials and shadows</td>
<td>Highest</td>
</tr>
</tbody>
</table>

May not be able to see some details
Changing/Adjusting Visual Styles

AutoCAD 2012 introduced the In-Viewport display controls, allowing you to quickly change the visual style used in a viewport.

To change between visual styles, simply click on the visual style name in the upper left corner of a viewport.

This will cause the list of available style to fly out, where you can select the visual style to be applied to the current viewport.

Prior to AutoCAD 2012, the simplest way to change the display style for a viewport was to navigate to the View tab on the ribbon and select the visual style from the drop-down list on the Visual Styles panel.

By default, the Shaded with Edges visual style shows the edges of a model as “By Entity”, meaning that they will be a lighter shade of whatever color the mesh is. That also means that they don’t stand out very well.

It may be beneficial for you to change the color of the edges. To do this, make use of the “Visual Styles Manager”.

Scroll down to the “Edge Settings” section.

You definitely want to show “Isolines”, not “Edges”.

Change the color to something that stands out against the overall color of the mesh model.

These visual style settings stay with the drawing.
Modifying a Mesh Model

After a mesh, either primitive or revolved, has been created, it is still very geometric in nature. Anybody can create a geometric shape with AutoCAD. That’s why one of the focus points of this session is on creating non-prismatic shapes. In other words, we’re going to now learn how to turn a cube of granite into a well-worn river rock.

We do this by pushing and pulling on our mesh. Remember the balloon surrounded by chicken wire?

Subobject Selection
In order to push and pull, you first select part of the mesh to move. If you just click on a mesh model, the entire object will be selected. You need instead to select a subobject of the mesh, either a face, edge or a vertex.

To select a face, edge, or vertex, press and hold Control as you select the object.

As you continue to hold down Ctrl, you can select as many subobjects as needed. It’s just like selecting regular AutoCAD objects such as lines, arcs and text.

To de-select a subobject, hold down Shift as well as the Ctrl and select the subobject.

Simplifying Subobject Selection
Since you probably don’t want to hold the Ctrl key down all day, AutoCAD provides a few ways to simplify the subobject selection process: Culling and Filters.

Culling
It can be difficult to select just the topmost subobject of a mesh. Turning on Culling forces AutoCAD to select just those subobjects on the visible surface of the mesh.

The visual style of the viewport must be set to one of the shaded styles (not wireframe).

Filters
Rather than holding down the Ctrl key all day, you can use filters.

When a subobject selection filter is on, you do not need to press and hold Ctrl to select the face, edge, or vertex of a 3D model. However, you need to turn off the filter to select the entire object.

<table>
<thead>
<tr>
<th>vertex filtering is on</th>
<th>edge filtering is on</th>
<th>face filtering is on</th>
<th>subobject filtering is off</th>
</tr>
</thead>
</table>

When a subobject filter is turned on, a small icon is displayed near the cursor.
The Gizmos

After selecting a subobject, a Gizmo should appear, allowing you to modify the subobject, enabling transformations like move, rotate or scale. If the Gizmo does not appear, it’s probably because you have the viewport visual display style set to 2D Wireframe. It must be any of the other visual styles.

To switch between the Gizmos, simply select one from the drop-down list in the subobject panel of the Mesh Modeling ribbon tab.

The Move and Scale Gizmos allow translation or scaling along the X, Y, or Z axis, or on the XY, XZ, or YZ plane. The Rotate Gizmo allows rotation along the X, Y, or Z axis.

After selecting one or more subobjects, grab the grip of a single subobject, or any of the grips if multiple subobjects are selected. The subobject(s) will now be moved.

To move the subobjects in a specific direction along an axis or plane, utilize the Move Gizmo. Simply click and hold on the axis or plane you want to move along, then drag the mouse. The subobject will move only along the axis or plane selected.

The Rotate Gizmo allows for rotation about the X, Y, or Z axes, and is most useful for Face or Line subobjects. A single line or face will be rotated about the selected axis running through it’s midpoint, and multiple subobjects will be rotated about the selected axis of the subobject chosen. To change the selected subobject, and thus the rotation point, simply hover over the grip of a different subobject and the Gizmo will jump to that grip.
Smoothness
Mesh objects are made up of multiple subdivisions, or tessellations, which define the editable faces. Each face consists of underlying facets. When you increase smoothness, you increase the number of facets to provide a smoother, more rounded look.

As you work, you can increase or decrease the level of smoothness. The differences are apparent both in the wireframe and conceptual visual styles as well as in the rendered output. A higher level of smoothness will require more system resources to draw on the screen, so it is often a good idea to model mesh objects at lower smoothness levels and increase the smoothness only as the model nears completion.

Creases
You can sharpen, or crease, the edges of mesh objects. Creasing deforms mesh faces and edges that are adjacent to the selected subobject. Creases added to a mesh that has no smoothness are not apparent until the mesh is smoothed.

You can also apply creases to mesh subobjects by changing the crease type and crease level in the Properties palette.

The Tedious Part
Now that you have the basic tools necessary to create and modify a mesh model, it’s time to make the mesh primitive into what you need.

Using the subobject selection filters and the Gizmos, push and pull on vertexes, lines and faces to shape the mesh primitive into something resembling your final product. Use the smoothness level to turn the geometric shape into something a little less prismatic.

This is a lot like working with a finite lump of clay. You can’t just add more stuff on to your model, but you can stretch bits and pieces of it around until it looks good.

Be careful not to tear a hole in your mesh by moving it back on top of itself. In order to get this model into a production environment, the mesh model needs to be watertight so that it can be converted into a solid and then exported for mold making.
A Mesh With Mass
Autodesk Mudbox® is like a digital lump of clay. Organic shapes are easy to create, and the level of detail available is incredible. But it has no mass or volume properties, and won’t export that level of detail into something usable outside of Mudbox or 3ds Max®. Autodesk Inventor has the necessary mass and volume capabilities, but it doesn’t do organic shapes. AutoCAD has the ability to create an organic shape of a specific and shape, but the mesh object itself has no mass. So, if a model needs to be made of a certain material and/or have a specific weight, what can we do to make it the right size?

Determining Volume
If you look in the Properties window or LIST a mesh model, it does not show a mass or volume. Use the MEASUREGEOM command with the VOLUME option, and select an OBJECT.

Command: MEASUREGEOM
Enter an option [Distance/Radius/3ngle/ARea/V4olume] <Distance>: VOLUME
Specify first corner point or [Object/Add volume/Subtract volume/eXit] <Object>: OBJECT
Select objects:
Volume = 182.3674

That sequence of keystrokes can get quite repetitive, so consider creating a new command called GetVolume and placing it on the Quick Access Toolbar.

Access the CUI
Create a new command
Name it something (GetVolume)
Type in the command macro
`^C^C_MEASUREGEOM V O \; ^C`
Expand the Quick Access Toolbar
Drag the new command to the Q.A.T.

Now all you have to do is click the button and select the mesh.
Calculating Weight and Volume

Since we can use the MEASUREGEOM, or the newly created GetVolume, command to get the volume of the mesh, we can calculate what the weight of the real, physical object will be simply by multiplying the volume of the object by the density of the material to be used.

\[\text{Volume} \times \text{Density} = \text{Weight} \]

Example:

<table>
<thead>
<tr>
<th>Model Volume:</th>
<th>4.18 in(^3)</th>
<th>Density of Glass:</th>
<th>1.45 oz/in(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculation:</td>
<td>4.18 * 1.45 = 6.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of Paperweight:</td>
<td>6.06 oz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can also work this the other way.

Suppose we know the weight of the final product, such as an 8 ounce chicken breast. Since the density is known, the desired volume can be calculated.

\[\frac{\text{Weight}}{\text{Density}} = \text{Volume} \]

Weight of lunch:	8.00 oz
Density of Chicken:	0.44 oz/in\(^3\)
Calculation:	8.00 / .44 = 12.50
Desired Model Volume:	12.5 in\(^3\)

Sculpting with Precision

Now that the necessary volume for the mesh model is known, it can be sculpted to get not only the correct shape, but the correct volume as well.

As the mesh model nears completion, the smoothness level should be increased. This will give it a more organic look and feel. Before measuring for the final volume, make sure that the smoothness level is set to the desired level, because the volume will change with the smoothness level as the sharp edges are rounded off.

Getting the correct volume is an iterative process.

1. Create the rough model
2. Set the smoothness level
3. Measure the volume
4. Adjust the model (pull a face out if too low, push it in if too high.)
5. Repeat steps 3 and 4 as necessary
Converting a Mesh to a Solid

The mesh model is complete: correct size, shape and volume. One more step remains before it can be used in a manufacturing process: converting it to a solid.

Most CNC/CAM software will not know what to do with a mesh. Autodesk Inventor doesn’t like a mesh object either, so it should be converted to a solid before export.

Even if a mold cavity is to be created in AutoCAD, the mesh needs to be converted to a solid so that a Boolean subtraction can be performed between the mold block and the work body.

When performing any sort of conversions or Boolean operations on solid or mesh models, the original object(s) is deleted. This means that when you convert the mesh to a solid, the mesh no longer exists. This is bad. Especially if you need to adjust the mesh, since it’s gone.

The DELOBJ system variable controls this. With a default value of 3, all defining geometry is deleted. Setting DELOBJ = 0 will retain all defining geometry.

In order for the solid to be as close in appearance and volume to the original mesh object, the conversion method should be set to “Smooth, optimized”.

To convert the mesh to a solid, click on the Convert to Solid button found on the Convert Mesh panel of the Mesh Ribbon tab.
Analysis

AutoCAD provides analysis tools for solids and surfaces, but not meshes, so the analysis tools are not available until after the mesh model has been converted into a solid.

Use the surface analysis tools available in the Analysis panel of the Surface Ribbon tab to validate surfaces and curves before manufacturing.

- **Zebra Analysis** - Analyzes surface continuity by projecting parallel lines onto the model.
- **Curvature Analysis** - Evaluates areas of high and low surface curvature by displaying a color gradient.
- **Draft Analysis** - Evaluates whether a model has adequate draft between a part and its mold.

Since draft angle is critical for most molding processes, the Draft analysis tool should be used before exporting a model for production. Simply click on Draft from the Analysis panel, and then when prompted, select the AutoCAD solid objects to analyze.

On a model properly constructed for molding, the analysis should show dark blue on the bottom and green on the top. This indicates that the majority of the model has a draft angle sufficient for it to be pulled from a mold.

Take some time to orbit around the model along the parting plane. Any areas that show up as a color other than dark blue or green indicate an area where the draft angle could be a problem, depending on the molding process and the medium being used.
Export the Solid

Before exporting the solid object, verify that it has the correct volume. There will be some difference in volume between the mesh model and the solid model. This difference is usually not apparent until the 3rd or 4th decimal place, but it can make a big difference on a large production run.

In the example on the previous page, the difference between the mesh and solid volumes is only 0.0208 cubic inches, but in a production run of a million units of the aluminum widget, this would result in a difference of over a ton of material.

<table>
<thead>
<tr>
<th>Volume (cu. in.)</th>
<th>Weight (oz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>132.8182</td>
</tr>
<tr>
<td>Solid</td>
<td>132.7974</td>
</tr>
<tr>
<td>Difference</td>
<td>0.0208</td>
</tr>
</tbody>
</table>

One million unit production difference in Pounds

<table>
<thead>
<tr>
<th>Difference in Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>32,448 oz.</td>
</tr>
<tr>
<td>2028</td>
</tr>
</tbody>
</table>

To export the solid model, start the EXPORT command, or navigate through the Application Window to Export → Other Formats.

This will bring up a dialog box asking you for a file type as well as a file name and location.

The type of file to export really depends on what software or system you will be importing it into, but the following types are best for 3D models.

- Lithography (*.STL)
- ACIS (*.SAT)
- IGES (*.IGES, *.IGS)

After selecting a file type and name, click SAVE.

AutoCAD will then prompt for the objects to be exported. Select the object(s) to be exported.

That’s it. You have now created a mesh model, converted it to a solid, and exported it for use, either as something to be machined, or for use as a work body for creating a mold.
But wait, there’s more!

Creating a mold cavity

Q: How do I use AutoCAD to turn the work body into a mold cavity?

A: Subtract the work body (the mesh model converted to a solid) from another solid block.

For the sake of expediency, the work body will be subtracted from simple rectangular blocks, although a complex part design could be used.

If the work body was well thought out in the beginning, the parting plane should be on the XY plane (Z=0), although any of the three origin planes will work. To create the solid to be used for the mold, navigate to the Solid tab of the Ribbon. From this tab, use either the Box command on the Primitive panel to draw a rectangular solid, or the Extrude command from the Solid panel to extrude a closed polyline.

Create the block or polyline on the XY plane (Z=0), or on the plane used as the parting line. For the height of the extrusion, select an appropriate positive value for the top half, then repeat with a negative height value for the bottom half.

It will be beneficial to create separate layers for the work body, top and bottom parts of the mold so that individual parts can be turned on or off for visibility.

At this point, you should have two solid blocks intersecting with the work body.

Set DELOBJ =0 so that the solid work body does not get deleted when it is subtracted from the block.

Start the SUBTRACT command found on the Boolean panel of the Solid modeling Ribbon tab. When prompted for the solids to subtract from, select the mold block, then select the work body when prompted for solids to subtract.

This subtraction will result in one half of the mold. Repeat for the other half, then export.
Life After AutoCAD

Once you have either the work body (as a solid) or the mold cavity exported, it can be imported into many other software packages, either for use in a machine design or directly for machining.

For example, the mold cavities (and even the work body) could be imported into Autodesk Inventor and placed as a part into an assembly.

While AutoCAD can create the organic shape that Inventor cannot, Inventor is much better at creating the enhancements necessary to make the AutoCAD generated mold into a functional manufacturing part, such as overflow channels, injection ports, extraction pins and alignment holes.

The Beginning

The process of using AutoCAD to produce an non-prismatic shape with a desired mass using mesh modeling is NOT an exact science, but rather an iterative process. The first one you try will most likely drive you batty. Do not give up. Practice and experience will make the process easier. It helps to have a physical sample to refer to, not necessarily for precise measurements, but more for the overall shape and feel of the object.

Good luck!
Organic Mesh Modeling for Manufacturing (Outline)

1. Start with an idea, model, or sketch
2. Create a new drawing, starting with acad3d.dwt
3. Create or import a sketch or boundary on the parting plane (XY plane recommended)
4. Determine and set the number of tessellation division necessary for your model
5. Create a Mesh Primitive (mostly) inside the boundary
 a. Set the elevation before creating so that the parting plane is at Z=0
6. With the smoothness set to 0, make gross adjustment to the mesh
 a. Keep all vertexes on the parting plane at Z=0 to maintain draft angles
 b. Push and pull faces, lines and vertexes (in that order) into position
7. Smooth the mesh one level
 a. Adjust as necessary to get the desired shape
8. Repeat Step 7 until you reach the maximum level of smoothness, and the desired shape
9. If a specific volume or mass is required, use MEASUREGEOM to obtain the volume
 a. Adjust as necessary
10. Convert the Mesh to a Solid
11. Use Analysis tools
12. Create a mold cavity if necessary
13. Export
Notes, ideas, advice, and other random thoughts...

- Your first time (at organic mesh modeling) can be painful. Keep it simple.
- Use a sketch, even if it’s a scan of something drawn on the back of a napkin.
- Model complexity kills performance. Don’t smooth the mesh until it’s necessary.
- Display complexity kills performance. Shades with Edges has the worst performance, but it is the best for working with as you get near the final shape. Catch 22.
- Use multiple viewports in model space to get a clear picture of what’s going on.
- If the model is to be used for molding, remember draft angles. You must be able to extract it from the mold.
- Occasionally, bump the smoothness level up to the max, just to see how it may change the overall shape of your mesh. You can always back it down and keep working.
- Although it’s possible, try to avoid splitting faces of the mesh. It just creates more problems than it solves.
- Measure the volume of the mesh often if a specific mass or volume is required:
 - Crank the smoothness level all the way up.
 - First time should be just after making the gross adjustments to the shape. This will let you know you are anywhere near the ballpark for the volume. It will also tell you if you need to push in or pull out on the model faces.
- When moving subobject around, do not overlap. This will tear the mesh.
- Use multiple layers for various object and part types.
- Set DELOBJ=0 before converting a mesh to a solid. This way you will retain the original mesh in case additional refinements are needed (and they will be).
- Measure the volume of the solid after converting:
 - A few decimal places will be lost or gained.
 - Make sure it is the solid that is measured. With DELOBJ=0, the mesh and the solid will be on top of each other. Put them on different layers.
- Use surface analysis after converting to a solid. Remember the draft angles.
- Use creases to create sharp ridges or valleys on the mesh.
- AutoCAD is great at creating the organic shape, but Inventor is better at making parts.
- After finalizing the Mesh model, SAVEAS before converting to a Solid. Just in case.
 - You cannot convert a solid back into the original mesh it was created from
- Use the .x, .y, and .z point filters if necessary.
- Always keep the draft angles in mind.